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Abstract: In this paper, based on Jumarie type of Riemann-Liouville (R-L) fractional derivative and a new 

multiplication of fractional analytic functions, we obtain arbitrary order fractional derivative of four types of matrix 
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formula play important roles in this article. Moreover, our results are generalizations of ordinary calculus results.  
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I.   INTRODUCTION 

Fractional calculus originated in 1695 and almost at the same time as traditional calculus. Fractional calculus is considered 

to be a useful tool for understanding and simulating many natural and artificial phenomena. It has developed rapidly in 

different scientific fields in the past few decades, including not only mathematics and physics, but also engineering, biology, 

economics and chemistry [1-13]. 

However, fractional calculus is different from traditional calculus. The definition of fractional derivative is not unique. 

Common definitions include Riemann-Liouville (R-L) fractional derivative, Caputo fractional derivative, Grunwald-

Letnikov (G-L) fractional derivative, and Jumarie’s modified R-L fractional derivative [14-18]. Because Jumarie type of R-

L fractional derivative helps to avoid non-zero fractional derivative of constant function, it is easier to use this definition to 

connect fractional calculus with traditional calculus. 

In this paper, based on Jumarie type of R-L fractional derivative and a new multiplication of fractional analytic functions, 

we use some techniques to study the following fractional differential problem of four types of matrix fractional functions: 

                                                                 ( 𝐷0 𝑥
𝛼)

𝑚
[𝑠𝑖𝑛ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑐𝑜𝑠𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼))],   

                                                                 ( 𝐷0 𝑥
𝛼)

𝑚
[𝑐𝑜𝑠ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑠𝑖𝑛𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼))],     

                                                                ( 𝐷0 𝑥
𝛼)

𝑚
 [𝑐𝑜𝑠ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑐𝑜𝑠𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼))], 

                                                                 ( 𝐷0 𝑥
𝛼)

𝑚
[𝑠𝑖𝑛ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑠𝑖𝑛𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼))], 

where 0 < 𝛼 ≤ 1, 𝜌, 𝑠 are real numbers, 𝑚 is any positive integer, and 𝐴 is a real matrix. Matrix fractional Euler’s formula 

and matrix fractional DeMoivre’s formula play important roles in this paper. In addition, our results are generalizations of 

classical calculus results.     

II.   PRELIMINARIES 

At first, we introduce the fractional derivative used in this paper. 

Definition 2.1 ([19]): Let 0 < 𝛼 ≤ 1, and 𝑥0  be a real number. The Jumarie’s modified Riemann-Liouville (R-L) 𝛼-

fractional derivative is defined by 

                                                                         ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                        (1) 
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where Γ( )  is the gamma function. On the other hand, for any positive integer 𝑚 , we define ( 𝐷𝑥0 𝑥
𝛼)

𝑚
[𝑓(𝑥)] =

( 𝐷𝑥0 𝑥
𝛼)( 𝐷𝑥0 𝑥

𝛼) ∙∙∙ ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)], the 𝑚-th order 𝛼-fractional derivative of 𝑓(𝑥).  

Proposition 2.2 ([20]):  If  𝛼, 𝛽, 𝑥0, 𝐶  are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)𝛽−𝛼,                                               (2) 

and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝐶] = 0.                                                                         (3) 

In the following, we introduce the definition of fractional analytic function. 

Definition 2.3 ([21]): If 𝑥, 𝑥0, and 𝑎𝑘 are real numbers for all 𝑘, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 

can be expressed as an 𝛼-fractional power series, i.e., 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0  on some open interval containing 

𝑥0, then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional analytic at 𝑥0. Furthermore, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on closed interval 

[𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional analytic function 

on [𝑎, 𝑏]. 

Next, a new multiplication of fractional analytic functions is introduced. 

Definition 2.4 ([22]): Let 0 < 𝛼 ≤ 1 , and 𝑥0  be a real number. If 𝑓𝛼(𝑥𝛼)  and  𝑔𝛼(𝑥𝛼)  are two 𝛼 -fractional analytic 

functions defined on an interval containing  𝑥0 , 

                                                                                   𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ,                                                     (4) 

                                                                                  𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0  .                                                     (5) 

Then we define 

                                                                         𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼)  

                                                                   = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ⨂𝛼 ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0   

                                                                   = ∑
1

Γ(𝑛𝛼+1)
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (𝑥 − 𝑥0)𝑛𝛼 .                                             (6) 

Equivalently, 

                                                       𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼) 

                                                 = ∑
𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0 ⨂𝛼 ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0   

                                                 = ∑
1

𝑛!
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

 .                                                 (7) 

Definition 2.5 ([23]): If 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are two 𝛼-fractional analytic functions defined on an interval 

containing 𝑥0 , 

                                             𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼 = ∑

𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0

∞
𝑛=0  ,                               (8) 

                                            𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼 = ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

.∞
𝑛=0

∞
𝑛=0                                  (9) 

The compositions of 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are defined by 

                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = 𝑓𝛼(𝑔𝛼(𝑥𝛼)) = ∑
𝑎𝑛

𝑛!
(𝑔𝛼(𝑥𝛼))

⨂𝛼 𝑛∞
𝑛=0 ,                                            (10) 

and 

                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) = 𝑔𝛼(𝑓𝛼(𝑥𝛼)) = ∑
𝑏𝑛

𝑛!
(𝑓𝛼(𝑥𝛼))

⨂𝛼 𝑛∞
𝑛=0 .                                            (11) 
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Definition 2.6 ([24]): Let 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) be two 𝛼-fractional analytic functions. Then (𝑓𝛼(𝑥𝛼))
⨂𝛼 𝑛

=

𝑓𝛼(𝑥𝛼)⨂𝛼 ⋯ ⨂𝛼 𝑓𝛼(𝑥𝛼) is called the 𝑛th power of 𝑓𝛼(𝑥𝛼).  

Definition 2.7: If the complex number 𝑧 = 𝑝 + 𝑖𝑞, where 𝑝, 𝑞 are real numbers, and 𝑖 = √−1. 𝑝, the real part of 𝑧, is 

denoted by Re(𝑧); 𝑞  the imaginary part of 𝑧, is denoted by Im(𝑧). 

Definition 2.8 ([25]): If 0 < 𝛼 ≤ 1, 𝑡 is a real number, and 𝐴 is a matrix. The matrix 𝛼-fractional exponential function, 

matrix 𝛼-fractional cosine function, and matrix 𝛼-fractional sine function are defined as follows: 

                                                        𝐸𝛼(𝑡𝐴𝑥𝛼) = ∑ (𝑡𝐴)𝑛 𝑥𝑛𝛼

Γ(𝑛𝛼+1)
= ∑

1

𝑛!
(𝑡𝐴

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑛
∞
𝑛=0

∞
𝑛=0  ,                               (12) 

                                            𝑐𝑜𝑠𝛼(𝑡𝐴𝑥𝛼) = ∑ (𝑡𝐴)2𝑛 (−1)𝑛𝑥2𝑛𝛼

Γ(2𝑛𝛼+1)
= ∑

(−1)𝑛

(2𝑛)!
(𝑡𝐴

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2𝑛
∞
𝑛=0

∞
𝑛=0 ,                             (13) 

                                        𝑠𝑖𝑛𝛼(𝑡𝐴𝑥𝛼) = ∑ (𝑡𝐴)2𝑛+1 (−1)𝑛𝑥(2𝑛+1)𝛼

Γ((2𝑛+1)𝛼+1)
= ∑

(−1)𝑛

(2𝑛+1)!
(𝑡𝐴

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (2𝑛+1)
∞
𝑛=0

∞
𝑛=0  .               (14) 

In addition, the matrix 𝛼-fractional hyperbolic cosine function and matrix 𝛼-fractional hyperbolic sine function are defined 

as follows: 

     𝑐𝑜𝑠ℎ𝛼(𝑡𝐴𝑥𝛼) =
1

2
[𝐸𝛼(𝑡𝐴𝑥𝛼) + 𝐸𝛼(−𝑡𝐴𝑥𝛼)] = ∑ (𝑡𝐴)2𝑛 𝑥2𝑛𝛼

Γ(2𝑛𝛼+1)
= ∑

1

(2𝑛)!
(𝑡𝐴

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2𝑛
∞
𝑛=0

∞
𝑛=0 ,              (15) 

and 

 𝑠𝑖𝑛ℎ𝛼(𝑡𝐴𝑥𝛼) =
1

2
[𝐸𝛼(𝑡𝐴𝑥𝛼) − 𝐸𝛼(−𝑡𝐴𝑥𝛼)] = ∑ (𝑡𝐴)2𝑛+1 𝑥(2𝑛+1)𝛼

Γ((2𝑛+1)𝛼+1)
= ∑

1

(2𝑛+1)!
(𝑡𝐴

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (2𝑛+1)
∞
𝑛=0

∞
𝑛=0 .            

(16) 

 

Theorem 2.9 (matrix fractional Euler’s formula)([26]): If 0 < 𝛼 ≤ 1, and 𝐴 is a real matrix, then 

                                                                             𝐸𝛼(𝑖𝐴𝑥𝛼) = 𝑐𝑜𝑠𝛼(𝐴𝑥𝛼) + 𝑖𝑠𝑖𝑛𝛼(𝐴𝑥𝛼).                                                 (17) 

Theorem 2.10 (matrix fractional DeMoivre’s formula)([27]): If 0 < 𝛼 ≤ 1, 𝑝 is an integer, and 𝐴 is a real matrix, then 

                                                      [𝑐𝑜𝑠𝛼(𝐴𝑥𝛼) + 𝑖𝑠𝑖𝑛𝛼(𝐴𝑥𝛼)]⨂𝛼 𝑝 = 𝑐𝑜𝑠𝛼(𝑝𝐴𝑥𝛼) + 𝑖𝑠𝑖𝑛𝛼(𝑝𝐴𝑥𝛼).                                (18) 

Definition 2.11: The smallest positive real number 𝑇𝛼 such that 𝐸𝛼(𝑖𝑇𝛼) = 1, is called the period of 𝐸𝛼(𝑖𝑥𝛼). 

III.   MAIN RESULTS 

In this section, we use some methods to obtain arbitrary order fractional derivative of four types of matrix fractional 

functions. At first, two lemmas are needed. 

Lemma 3.1: If 0 < 𝛼 ≤ 1, 𝜌, 𝑠 are real numbers, and 𝐴 is a real matrix, then 

           𝑠𝑖𝑛ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼)) 

      = 𝑠𝑖𝑛ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑐𝑜𝑠𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼)) + 𝑖 ∙ 𝑐𝑜𝑠ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑠𝑖𝑛𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼)).            (19) 

         𝑐𝑜𝑠ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼)) 

     = 𝑐𝑜𝑠ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑐𝑜𝑠𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼)) + 𝑖 ∙ 𝑠𝑖𝑛ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑠𝑖𝑛𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼)).            (20) 

Proof   By matrix fractional Euler’s formula and matrix fractional DeMoivre’s formula, 

     𝑠𝑖𝑛ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼)) 

= 𝑠𝑖𝑛ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼) + 𝑖 ∙ 𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼)) 

= 𝑠𝑖𝑛ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑐𝑜𝑠ℎ𝛼(𝑖𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼)) + 𝑐𝑜𝑠ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑠𝑖𝑛ℎ𝛼(𝑖𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼)) 
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= 𝑠𝑖𝑛ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑐𝑜𝑠𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼)) + 𝑖 ∙ 𝑐𝑜𝑠ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑠𝑖𝑛𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼)).             

And 

   𝑐𝑜𝑠ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼)) 

 = 𝑐𝑜𝑠ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼) + 𝑖 ∙ 𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼)) 

= 𝑐𝑜𝑠ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑐𝑜𝑠ℎ𝛼(𝑖𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼)) + 𝑠𝑖𝑛ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑠𝑖𝑛ℎ𝛼(𝑖𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼)) 

= 𝑐𝑜𝑠ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑐𝑜𝑠𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼)) + 𝑖 ∙ 𝑠𝑖𝑛ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑠𝑖𝑛𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼)).      q.e.d. 

Lemma 3.2: If 0 < 𝛼 ≤ 1, 𝜌, 𝑠 are real numbers, and 𝐴 is a real matrix, then 

          𝑠𝑖𝑛ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼)) = ∑
1

(2𝑛+1)!
𝜌2𝑛+1[𝑐𝑜𝑠𝛼((2𝑛 + 1)𝑠𝐴𝑥𝛼) + 𝑖 ∙ 𝑠𝑖𝑛𝛼((2𝑛 + 1)𝑠𝐴𝑥𝛼)]∞

𝑛=0  ,                    (21) 

                𝑐𝑜𝑠ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼)) = ∑
1

(2𝑛)!
𝜌2𝑛[𝑐𝑜𝑠𝛼(2𝑛𝑠𝐴𝑥𝛼) + 𝑖 ∙ 𝑠𝑖𝑛𝛼(2𝑛𝑠𝐴𝑥𝛼)]∞

𝑛=0  .                                          (22) 

Proof   𝑠𝑖𝑛ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼)) 

          = ∑
1

(2𝑛+1)!
(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼))

⨂𝛼 (2𝑛+1)∞
𝑛=0   

          = ∑
1

(2𝑛+1)!
𝜌2𝑛+1𝐸𝛼(𝑖(2𝑛 + 1)𝑠𝐴𝑥𝛼)∞

𝑛=0    (by matrix fractional DeMoivre’s formula) 

          = ∑
1

(2𝑛+1)!
𝜌2𝑛+1[𝑐𝑜𝑠𝛼((2𝑛 + 1)𝑠𝐴𝑥𝛼) + 𝑖 ∙ 𝑠𝑖𝑛𝛼((2𝑛 + 1)𝑠𝐴𝑥𝛼)]∞

𝑛=0  .     

And 

               𝑐𝑜𝑠ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼)) 

          = ∑
1

(2𝑛)!
(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼))

⨂𝛼 2𝑛∞
𝑛=0   

          = ∑
1

(2𝑛)!
𝜌2𝑛𝐸𝛼(𝑖2𝑛𝑠𝐴𝑥𝛼)∞

𝑛=0    (by matrix fractional DeMoivre’s formula) 

          = ∑
1

(2𝑛)!
𝜌2𝑛[𝑐𝑜𝑠𝛼(2𝑛𝑠𝐴𝑥𝛼) + 𝑖 ∙ 𝑠𝑖𝑛𝛼(2𝑛𝑠𝐴𝑥𝛼)]∞

𝑛=0  .                                                          q.e.d.                                                      

Theorem 3.3:  If 0 < 𝛼 ≤ 1,  𝜌, 𝑠 are real numbers, 𝑚 is any positive integer, 𝐴 is a real matrix, and 𝐸 is the unit matrix, 

then 

                                   ( 𝐷0 𝑥
𝛼)

𝑚
[𝑠𝑖𝑛ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑐𝑜𝑠𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼))] 

                              = (𝑠𝐴)𝑚 ∑
1

(2𝑛+1)!
𝜌2𝑛+1(2𝑛 + 1)𝑚𝑐𝑜𝑠𝛼 ((2𝑛 + 1)𝑠𝐴𝑥𝛼 + 𝑚 ∙

𝑇𝛼

4
𝐸)∞

𝑛=0 ,                                    (23) 

                                  ( 𝐷0 𝑥
𝛼)

𝑚
[𝑐𝑜𝑠ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑠𝑖𝑛𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼))] 

                             = (𝑠𝐴)𝑚 ∑
1

(2𝑛+1)!
𝜌2𝑛+1(2𝑛 + 1)𝑚𝑠𝑖𝑛𝛼 ((2𝑛 + 1)𝑠𝐴𝑥𝛼 + 𝑚 ∙

𝑇𝛼

4
𝐸)∞

𝑛=0 ,                                     (24) 

                                 ( 𝐷0 𝑥
𝛼)

𝑚
 [𝑐𝑜𝑠ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑐𝑜𝑠𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼))] 

                             = (𝑠𝐴)𝑚 ∑
1

(2𝑛)!
𝜌2𝑛(2𝑛)𝑚𝑐𝑜𝑠𝛼 (2𝑛𝑠𝐴𝑥𝛼 + 𝑚 ∙

𝑇𝛼

4
𝐸)∞

𝑛=0  ,                                                             (25) 

                                ( 𝐷0 𝑥
𝛼)

𝑚
[𝑠𝑖𝑛ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑠𝑖𝑛𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼))] 

                            = (𝑠𝐴)𝑚 ∑
1

(2𝑛)!
𝜌2𝑛(2𝑛)𝑚𝑠𝑖𝑛𝛼 (2𝑛𝑠𝐴𝑥𝛼 + 𝑚 ∙

𝑇𝛼

4
𝐸)∞

𝑛=0  .                                                              (26) 

Proof   By Lemma 3.1 and Lemma 3.2, 

                    ( 𝐷0 𝑥
𝛼)

𝑚
[𝑠𝑖𝑛ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑐𝑜𝑠𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼))] 
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                = ( 𝐷0 𝑥
𝛼)

𝑚
[Re{𝑠𝑖𝑛ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼))}]  

                = Re {( 𝐷0 𝑥
𝛼)

𝑚
[𝑠𝑖𝑛ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼))]}  

                = Re {( 𝐷0 𝑥
𝛼)

𝑚
[∑

1

(2𝑛+1)!
𝜌2𝑛+1[𝑐𝑜𝑠𝛼((2𝑛 + 1)𝑠𝐴𝑥𝛼) + 𝑖 ∙ 𝑠𝑖𝑛𝛼((2𝑛 + 1)𝑠𝐴𝑥𝛼)]∞

𝑛=0 ]}      

                = ∑
1

(2𝑛+1)!
𝜌2𝑛+1(2𝑛 + 1)𝑚(𝑠𝐴)𝑚𝑐𝑜𝑠𝛼 ((2𝑛 + 1)𝑠𝐴𝑥𝛼 + 𝑚 ∙

𝑇𝛼

4
𝐸)∞

𝑛=0   

               = (𝑠𝐴)𝑚 ∑
1

(2𝑛+1)!
𝜌2𝑛+1(2𝑛 + 1)𝑚𝑐𝑜𝑠𝛼 ((2𝑛 + 1)𝑠𝐴𝑥𝛼 + 𝑚 ∙

𝑇𝛼

4
𝐸)∞

𝑛=0  . 

                     ( 𝐷0 𝑥
𝛼)

𝑚
[𝑐𝑜𝑠ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑠𝑖𝑛𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼))] 

                = ( 𝐷0 𝑥
𝛼)

𝑚
[Im{𝑠𝑖𝑛ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼))}]  

                = Im {( 𝐷0 𝑥
𝛼)

𝑚
[𝑠𝑖𝑛ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼))]}  

                = Im {( 𝐷0 𝑥
𝛼)

𝑚
[∑

1

(2𝑛+1)!
𝜌2𝑛+1[𝑐𝑜𝑠𝛼((2𝑛 + 1)𝑠𝐴𝑥𝛼) + 𝑖 ∙ 𝑠𝑖𝑛𝛼((2𝑛 + 1)𝑠𝐴𝑥𝛼)]∞

𝑛=0 ]}      

                = ∑
1

(2𝑛+1)!
𝜌2𝑛+1(2𝑛 + 1)𝑚(𝑠𝐴)𝑚𝑠𝑖𝑛𝛼 ((2𝑛 + 1)𝑠𝐴𝑥𝛼 + 𝑚 ∙

𝑇𝛼

4
𝐸)∞

𝑛=0   

               = (𝑠𝐴)𝑚 ∑
1

(2𝑛+1)!
𝜌2𝑛+1(2𝑛 + 1)𝑚𝑠𝑖𝑛𝛼 ((2𝑛 + 1)𝑠𝐴𝑥𝛼 + 𝑚 ∙

𝑇𝛼

4
𝐸)∞

𝑛=0  . 

                     ( 𝐷0 𝑥
𝛼)

𝑚
[𝑐𝑜𝑠ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑐𝑜𝑠𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼))] 

                = ( 𝐷0 𝑥
𝛼)

𝑚
[Re{𝑐𝑜𝑠ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼))}]  

                = Re {( 𝐷0 𝑥
𝛼)

𝑚
[𝑐𝑜𝑠ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼))]}  

                = Re {( 𝐷0 𝑥
𝛼)

𝑚
[∑

1

(2𝑛)!
𝜌2𝑛[𝑐𝑜𝑠𝛼(2𝑛𝑠𝐴𝑥𝛼) + 𝑖 ∙ 𝑠𝑖𝑛𝛼(2𝑛𝑠𝐴𝑥𝛼)]∞

𝑛=0 ]}      

                = ∑
1

(2𝑛)!
𝜌2𝑛(2𝑛)𝑚(𝑠𝐴)𝑚𝑐𝑜𝑠𝛼 (2𝑛𝑠𝐴𝑥𝛼 + 𝑚 ∙

𝑇𝛼

4
𝐸)∞

𝑛=0   

               = (𝑠𝐴)𝑚 ∑
1

(2𝑛)!
𝜌2𝑛(2𝑛)𝑚𝑐𝑜𝑠𝛼 (2𝑛𝑠𝐴𝑥𝛼 + 𝑚 ∙

𝑇𝛼

4
𝐸)∞

𝑛=0  . 

Finally, 

                     ( 𝐷0 𝑥
𝛼)

𝑚
[𝑠𝑖𝑛ℎ𝛼(𝜌𝑐𝑜𝑠𝛼(𝑠𝐴𝑥𝛼))⨂𝛼 𝑠𝑖𝑛𝛼(𝜌𝑠𝑖𝑛𝛼(𝑠𝐴𝑥𝛼))] 

                = ( 𝐷0 𝑥
𝛼)

𝑚
[Im{𝑐𝑜𝑠ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼))}]  

                = Im {( 𝐷0 𝑥
𝛼)

𝑚
[𝑐𝑜𝑠ℎ𝛼(𝜌𝐸𝛼(𝑖𝑠𝐴𝑥𝛼))]}  

                = Im {( 𝐷0 𝑥
𝛼)

𝑚
[∑

1

(2𝑛)!
𝜌2𝑛[𝑐𝑜𝑠𝛼(2𝑛𝑠𝐴𝑥𝛼) + 𝑖 ∙ 𝑠𝑖𝑛𝛼(2𝑛𝑠𝐴𝑥𝛼)]∞

𝑛=0 ]}      

                = ∑
1

(2𝑛)!
𝜌2𝑛(2𝑛)𝑚(𝑠𝐴)𝑚𝑠𝑖𝑛𝛼 (2𝑛𝑠𝐴𝑥𝛼 + 𝑚 ∙

𝑇𝛼

4
𝐸)∞

𝑛=0   

               = (𝑠𝐴)𝑚 ∑
1

(2𝑛)!
𝜌2𝑛(2𝑛)𝑚𝑠𝑖𝑛𝛼 (2𝑛𝑠𝐴𝑥𝛼 + 𝑚 ∙

𝑇𝛼

4
𝐸)∞

𝑛=0  .                                                     q.e.d. 

IV.   CONCLUSION 

In this paper, based on Jumarie type of R-L fractional derivative and a new multiplication of fractional analytic functions, 

we find arbitrary order fractional derivative of four types of matrix fractional functions by using some methods. In fact, our 

results are generalizations of traditional calculus results. In the future, we will continue to use Jumarie type of R-L fractional 

derivative and the new multiplication of fractional analytic functions to study the problems in fractional differential 

equations and applied mathematics. 
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